

Planet Party Grades K-2

The Big Idea

This week you'll use glowsticks to map the Earth's path as it zooms through space. You'll see why the Moon changes shape, and how fast it has to hustle to orbit around us!

Supplies You Provide

\star Glowsticks: 52 sticks (13 of each color: green, red, blue and yellow) Glowsticks are highly recommended, but you could use painter's tape, yarn, or ribbon in green, red, blue and yellow. You'll need approximately 8 feet of each color.

* Flashlight
\star Writing surface, like whiteboard, blackboard or large sheet of paper

Room Set-up

\star Choose a space where the lights can be dimmed, so the kids can see the glowsticks glow!

* Clear the middle of the room to create at least IO square feet of open space.

Other Key Prep

\star Print 1 copy of the Planet Party Number Chart

* Sort out $\mathbf{I 3}$ sticks in each color: red, green, blue, yellow. Keep the connectors handy, too. Crack and shake the sticks right before the club starts.
* It's important that you watch the Coach Overview Video for this week to see the activity in action.

What's the Math?

\star Geometry: diameter, circumference
\star Factors and multiplication
\star Ratios and scale

Kickoff

Intro to the kids: "Today we're going to explore how far the Earth and Moon travel through space!"

Make Some Space (IO minutes)

Intro to the kids: "Let's start by making a model of the Earth's orbit around the Sun!"

1. Split the kids into $\mathbf{4}$ groups.
2. Hand each group 13 sticks of the same color plus connectors.
3. Each group uses connectors to connect their own sticks in a line.
4. Then ask the green team to connect 1 end to the blue group. Then the blue
 group connects its open end to the yellow group. The yellow group connects its open end to the red group, which connects its open end to green to make one large, 52-stick circle!
5. Dim the lights to see it all glow! Party Fun Fact In real life Earth's orbit is an ellipse (oval), not an exact circle.

Ask the kids:

* "This is Earth's orbit. Why do we have $1 / 4$ of it in each color?" (Discuss. It shows the $\mathbf{4}$ seasons! Show the kids the glow sticks going counterclockwise: green spring, red summer, yellow autumn and blue winter.)
* "The distance across the circle is called the diameter. And the distance around the circle is called the circumference."

Bonus (optional): Ask the kids:

* "If the Earth is 93 million miles from the Sun (the center of this circle), how far across is its whole orbit?" (Answer: twice as far, or 186 million miles.)

丸 "Do you know how to get the circumference from the diameter?" (Discuss. Explain that it's always a little more than 3 times the diameter, or $\mathbf{p i}$, which is rounded to 3.14 (some kids may not have learned pi yet.))
ڤ "So about how far do we and the Earth travel around the Sun every year?" (Answer: we all travel about $\mathbf{5 8 4}$ million miles a year!)
Ł "How many millions of miles have you traveled in your life?" (Discuss. Let the kids round to 500 or 600 million to estimate!)

Get the Rhythm (5-10 minutes)

Intro to the kids: "Now let's stand in and around our glowstick orbit. We're going to learn some new moves to get the rhythm of the Earth and Moon in orbit around the Sun."
\star "We're going to count out loud as a group: $1,2,3 \cdots$ Then on 4 you also clap - and you're going to clap on every $4^{\text {th }}$ number."

1. Hold up the Planet Party Number Chart.

* "What's the next number you'll clap for? And the one after that?"
\star "Then, on every $13^{\text {th }}$ number, you also stomp your feet. When will you stomp next after 13?" (Discuss. See if kids notice that the circled numbers are for stomping.)
※ "We're now going to do our rhythm up to 52. Is everyone ready?" Now try it! You can first practice just clapping on the 4s, then try again with them adding the stomps on the 13s.

Ask the kids:

夫 "Can anyone guess why on Earth we did this?" (Discuss. You can give the kids a hint if needed: "What comes in a set of 52?" They may guess playing cards, but that's not the answer we're looking for! See if kids guess that it's the number of weeks in a year.)
^ "So, what happens every 4 weeks?" (Discuss. Wait to see if the kids guess that that's roughly the time our Moon takes to travel in a circular path, or orbit, once around the Earth.)

* "And what happens every 13 weeks?" (Discuss. See if kids guess that it's the start of a new season!)

Bonus (optional): Ask the kids: "Knowing that there are 365 days in a year, are there exactly 52 weeks in a year?" (Discuss. Let them play with the numbers and see if they can figure out that 52 weeks times 7 days per week is only 364 days. What's the discrepancy? The Moon's orbit is closer to 29 days, which is a bit longer than 4 weeks.)

Feel the Earth Move (20 minutes)

Intro to the kids: "It's time to send the Earth and Moon into orbit!"

1. Ask for $\mathbf{3}$ volunteers to be the Earth, Moon, and Sun.
2. Hand the Sun a flashlight. S/he stands at the center of your glowstick orbit.
3. The Earth stands on the orbit at the division between blue and green, facing green.
4. The Moon stands on the far side of Earth away from the Sun. The Sun shines the flashlight on both of them.

Ask the kids: "What time of year is this?" (Answer: The start of spring!)
5. Divide the remaining kids into $\mathbf{4}$ groups. Have each group stand at the start of a season. These kids are the stars in outer space.
6. First, to practice the Moon's orbit, the stars count $1,2,3 \cdots$ and clap on all the multiples of 4. The Earth stands still, while the Moon walks around the Earth counterclockwise like in real life - and has to get all the way around the Earth on every clap (4 $4^{\text {th }}$ beat)!
7. Once they master that, the Earth starts walking around its glowstick orbit counterclockwise, while the Moon keeps walking around the Earth. Remind the stars group that:
\star They now have to stomp on the 13 s to mark each season (13, 26, 39, and 52).
\star Earth has to move 1 glowstick with each count to make it to the next season by each stomp!
\star Point out that in reality the Earth is also spinning 7 times each week (1 glowstick) and 90 times per season. If your Earth volunteer can handle the extra movement, then go for it!
8. When Earth and Moon reach the end of spring, swap in 3 new kids to be the Earth, Moon, and Sun. Swap again at the end of each season so more kids get to play.
9. As soon as the kids get comfortable with their orbits, you can turn off the lights to boost the flashlight and glowstick effect.
10. Repeat as time and interest allows.

Bonus (optional): Put a Spin on It (15-20 minutes)

Appropriate for kids who are looking for a challenge
Intro to the kids:""In real life, how far away from us is our Moon?" (Discuss: It's about 240,000 miles, or nearly a quarter-million miles!) When you look up into the sky at night, you'll notice that the moon changes shape from day to day and is in a different part of the sky each night at the same time. Let's look at the Moon's orbit!"

1. Ask for $\mathbf{3}$ new volunteers to be the Earth, Moon, and Sun.
2. The Moon stands on the far side of Earth away from the Sun. The Sun shines the flashlight on both of them.

Ask the kids:

\star "Our Moon is standing on the dark (night) side of Earth. What would this Moon look like?" (Answer: you'd see a full moon, the lit side.)
3. Now let the Moon walk counterclockwise $1 / 4$ of the way around the Earth, as shown here:

Ask the kids:

* "What shape does the Moon look like now to people on Earth?" (Answer: it's a half moon, with the left side lit to make a C.)
Ł "And what time of day is it for people looking straight up at it?" (Discuss: It's sunrise: if they look left, they can just start to see the Sun. Let the Earth turn counterclockwise in place to show sunrise.)
夫 "What time of day is it for people who are just starting to see the Moon?" (Discuss: See if they figure out that it's midnight - the Moon is rising in the east, to their left.)
\star Explain: "As we see, a I/2 moon is up I/2 the night! And a full moon is up for the full night - easy to remember! That's a Party Fun Fact you can share with your friends and family!"

4. Have the Moon move between the Earth and Sun to show the new moon. It's up all day: "zero" moon is up for 0 hours of the night!

A Touch of Class: "I bet you didn't know you could use math to figure out the different seasons and the times we will see a full moon! We see circles every day, but the ones we can't see are the biggest and the best, like the Earth's orbit. And we measure those using the same math from school."

Planet Party Number Chart

1	2	3	$\mathbf{4}$
5	6	7	$\mathbf{8}$
9	10	11	$\mathbf{1 2}$
13	14	15	$\mathbf{1 6}$
17	18	19	$\mathbf{2 0}$
21	22	23	$\mathbf{2 4}$
25	26	27	$\mathbf{2 8}$
29	30	31	$\mathbf{3 2}$
33	34	35	$\mathbf{3 6}$
37	38	39	$\mathbf{4 0}$
41	42	43	$\mathbf{4 4}$
45	46	47	$\mathbf{4 8}$
49	50	51	$\mathbf{5 2}$

