

The Big Idea

Today you get to be math magicians. You'll learn what an **optical illusion** is and **uncover the math** behind how our eyes play tricks on us.

Supplies

- ★ Drinking glasses with smooth clear glass: 2
- ★ Index cards, 4x6 inches: 2 per kid, plus 2 for the coach
- ★ Laptop, smartphone or tablet with internet access (optional, but encouraged)
- ★ Pencils: 1 per kid
- ★ Rulers: 1 per kid
- ★ Scissors: 8 pairs for kids to share
- ★ Water for 2 glasses
- ★ Writing surface, whiteboard, blackboard or large piece of paper
- ★ To print: Chocolate Bar Printable, 1 per kid

Room Set-up:

★ You'll need a room with some desks or tables for this week.

Other Key Prep

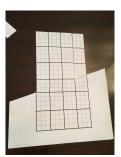
★ Print I copy per kid of the Chocolate Bar Printable. You may want to have a few extras on hand in case someone accidentally cuts the wrong squares.

What's the Math?

- ★ Linear measurement
- ★ Area

★ Estimation

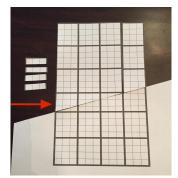
Kickoff


Intro to the kids: "Have your eyes ever played tricks on you? Maybe you thought you saw one shape, but it turned out to be something else?" (Discuss.) "An **optical illusion** happens when our eyes send information to our brains that trick us into seeing something that isn't really there. It turns out there's a lot of math happening behind the scenes!"

Infinite Chocolate Bar (20-25 minutes)

To the kids: "First we'll start with a very cool optical illusion. Have you ever wished you could have an endless supply of chocolate? What if you had a chocolate bar that you could break apart, eat a bite, and put back together again, just like new? Let's practice with this grid!"

- 1. Give each kid a Chocolate Bar Printable.
- 2. Start by counting the number of rectangles along the **right-hand column.**
- 3. Now, ask kids to share the scissors to cut out their Chocolate Bars:
- ★ First, cut across the diagonal line.
- ★ Then cut the top pieces along the dotted lines. Make sure kids trim the solid white margins off the pieces.
- ★ Ask kids to set aside the smallest "bite" of chocolate
- ★ Like a puzzle, rearrange the remaining pieces to form a complete chocolate bar.
- 4. Ask the kids to count the rectangles along the **right-hand column.**



Ask the kids:

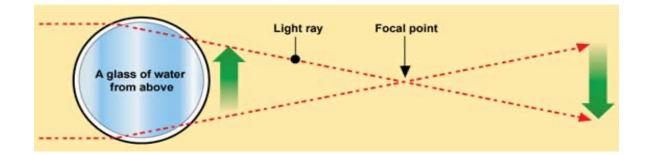
★ "What's going on here?! Is it really possible to take away a piece of chocolate and still have a complete chocolate bar?" (Discuss. Let the kids examine the bar closely until they discover it's a little shorter than it was before. This means the total **area** of the new bar is smaller than the original one.)

To the kids: "If you look at the little bite of chocolate bar that we set aside, you'll see that it's a grid 3 squares **wide** and 4 squares **long** for a total **area** of 12 tiny squares (width x length = area)."

- ★ "Now, look back at your reassembled chocolate bar. Notice that the rectangles in the 4th row, through which we made our diagonal cut, are still 3 squares wide but only 3 squares long - that's a total area of 9 squares in each of those bites, unlike the other bites that have 12 squares."
- ★ "So, if 4 bites are missing 3 squares each, that means we're missing a total of 12 squares from the whole chocolate bar – the same number of squares that are in the little bite we set aside!"
- * "Can we cut our little bite into 4 mini-bites of 3 squares each?" Let the kids figure out that they should cut the little bite into 4 rows to discover it's the same number of rows and squares that are missing from the diagonal cut of the giant chocolate bar!

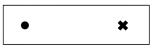
Reversing Arrows (15 minutes)

To the kids: "Next up is an optical illusion called reversing arrows."


- 1. Give each kid an index card and ask them to **draw a thick arrow** on the card.
- 2. Fill 2 clear glasses with water and put them on a table.
- 3. Divide the kids into 2 groups and have each gather around a glass.
- 4. One at a time, have kids place their arrow cards **behind the water and**

against the glass pointing either left or right, and then slowly **move the card backward** while watching through the water.

Ask the kids:


- ★ "What happens when you move your arrows backward?" (Discuss. They appear to change direction!)
- ★ "Why do you think the arrow reverses itself?" (Discuss. It happens because of **refraction**, the **bending of light**. When light travels through water, it bends, so the rays pop out shining toward a single center point, called the focal point. Any images on the other side the focal point will look reversed to us.)

To See or Not to See (IO minutes)

To the kids: "OK, are you ready for one more optical illusion? Does anyone know what a **blind spot** is?" (Discuss.) "It's a spot in the air where your eye can't see anything. There is 1 spot on the inside of your eyeball where there are no **cones** or **rods**, which are the parts in your eye that pick up light. Everyone has a blind spot, so let's find yours!"

 Give each kid another index card, I ruler, and I pencil. Have them draw an x on the right side of the card. Then have them measure

about 5 inches to the left of the \mathbf{x} , and draw a dot the size of a penny. (Mark up your own index card to demonstrate.)

- Have the kids hold their cards at eye level an arm's length away. Make sure the x is on the right.
- 3. Tell them to **close their right eye** and look **directly at the x** with their **left eye**. (They should be able to see both shapes.)
- 4. Have them **slowly** bring the card toward their face, focusing on the **x**. They **must** keep looking right at it no looking to the side!

Ask the kids: "What happens as you bring the card closer?" (Discuss. The dot should **disappear. then reappear** as they bring the card even closer to their face. Let them try moving the card closer and farther to pinpoint where it happens!)

5. Now have the kids **close their left eye** and look directly at the **dot** with their right eye.

Ask the kids:

- ★ "What happened this time?" (Discuss. This time the x disappears, then reappears as the card comes closer.)
- \star "Is the distance from your face about the same for both eyes?"
- ★ "Will the dot still disappear if it's as big as a quarter?" (Let the kids fill in around the dot to try a new size.)
- ★ "What if it's a different shape, like a triangle or square?"

- 6. Next, have the kids draw a **straight line** from the **dot** to the **x** using a ruler.
- Have the kids repeat the exercise, focusing on the x with their left eye.

Ask the kids:

- ★ "What happens when you bring the card closer?" (Discuss. The dot disappears, but the line looks continuous without a gap where the dot used to be.)
- ★ "Why isn't there a gap where the dot used to be?" Party Fun Fact: When our eye can't see what's in a certain spot, our brain fills in that area to match what surrounds it.

Grand Finale: Crazy Circles (5 minutes)

Show the kids **this cool optical illusion video** from your laptop, phone or tablet: <u>http://safeshare.tv/v/ss571e3c0b2ad60</u>