

The Big Idea:

Use your M&Ms[™] to explore counting and comparisons. Group them by color, then line them up to make rows marching across the paper. Turns out you've just made an official bar graph!

You Will Need:

- ★ 1 single-serving pack of regular M&MsTM (1.69 oz.)
- ★ To print: M&MTM Bar Graph last page (page 3)

The Math Behind the Scenes:

Bar graphs are a tool used by grown-ups all the time to show facts and figures in an easy-todigest way - and that's literally true for our candy graph! The bars show key statistical concepts:

- **★ maximum**: the color with the most M&Ms[™]
- ★ minimum: the color with the fewest M&Ms[™]
- ★ median: if ordered from fewest to most, the middlemost color

Instructions

- 1. Dump out the M&Ms™. Regular is flatter than peanut and won't roll.
- 2. Group the M&Ms[™] by color. How many colors are there? Different mixes have different sets of colors!
- 3. Decide the order you want for the colors, rainbow order or mixed up. Write the colors on the dotted lines under the sideways arrow (the x-axis).
- 4. Line up the M&Ms™ of each color edge to edge in a vertical row above that color name, starting at the x-axis.
- 5. The **y-axis** is that line running up and down the left side. In our graph, this tells you the number of M&Ms[™] of each color. See which color wins!

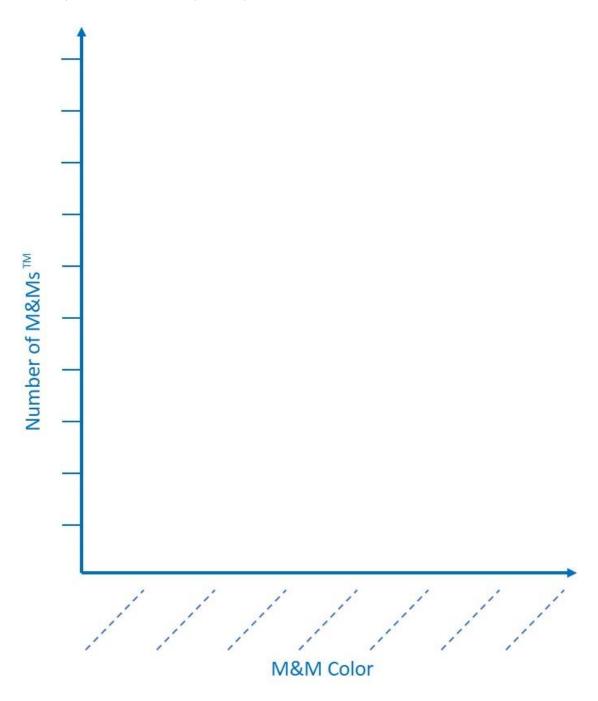
Riddles and Questions

PreK: Find your favorite color. Count up the M&Ms™ as high as you can!

Kindergartners: How many M&Ms[™] are there in your favorite color? Can you count down from that number?

 1^{st} -graders: Which color has the most M&MsTM? Which has the fewest?

 2^{nd} -graders: Find a color that has exactly twice as many M&MsTM as another color. Then find a set of colors that add up to lucky 13.


 3^{rd} -graders: Find 2 pairs of colors that add up to the same number as each other.

4th-graders: If there were the same number of M&Ms[™] for every color, how many would that be? Can you divide them up evenly? How few M&Ms[™] can you move to make the columns close or equal to the same number?

5th-graders: If you had 100 M&Ms[™] in the same ratios, about how many blues would you have? How many reds?

M&M™ Bar Graph

Print this page and write the colors on the dotted lines in your favorite order. Place the paper on the table or counter. Line up your $M\&Ms^{m}$ in the correct columns and find out how many the $M\&M^{m}$ factory gave you for each color!

